Consistent Autoregressive Spectral Estimates

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust reconstruction of aliased data using autoregressive spectral estimates

Autoregressive modeling is used to estimate the spectrum of aliased data. A region of spectral support is determined by identifying the location of peaks in the estimated spatial spectrum of the data. This information is used to pose a Fourier reconstruction problem that inverts for a few dominant wavenumbers that are required to model the data. Synthetic and real data examples are used to illu...

متن کامل

Consistent Estimates Based on Partially Consistent Observations

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive...

متن کامل

Multivariate Autoregressive and Ornstein-uhlenbeck Processes: Estimates for Order, Parameters, Spectral Information, and Conndence Regions

Fast methods are presented for identifying a multivariate autoregressive model that is appropriate to represent large, potentially high-dimensional time series data as they occur, e.g., in geophysical applications. The algorithms are based on the concept of least-squares estimation, which is known to yield consistent and asymptotically unbiased coeecient matrix estimates that also perform well ...

متن کامل

Parameter Estimates for Fractional Autoregressive Spatial Processes

A binomial-type operator on a stationary Gaussian process is introduced in order to model long memory in the spatial context. Consistent estimators of model parameters are demonstrated. In particular , it is shown thatˆdN − d = OP ((Log N) 3 N), where d = (d1, d2) denotes the long memory parameter.

متن کامل

Bayesian Estimates for Vector - Autoregressive Models

This paper examines frequentist risks of Bayesian estimates of VAR regression coefficient and error covariance matrices under competing loss functions, under a variety of non-informative priors, and in the normal and Student-t models. Simulation results show that for the regression coefficient matrix an asymmetric LINEX estimator does better overall than the posterior mean. For the error covari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 1974

ISSN: 0090-5364

DOI: 10.1214/aos/1176342709